Tuesday, August 27, 2013

ޓީޗިންގ އެކްސެލެންސް އެވޯޑްސް 2013


 އެވޯޑުގެ މިންގަނޑު     


ތަފާތު 11 ފަރާތްތަކެއްގެ ހުނަރުތައް ފާހަގަކުރުމަށްޓަކައި 11 އެވޯޑެއް ތަޢާރަފުކުރެވިފައިވެއެވެ.



1.      އެއާޓެކްސީ އެވޯޑް ފޯ ޕްރިންސިޕަލް އޮފް ދަ އިޔަރ - މި މިންގަނޑުގައި ހިމެނޭނީ ފާއިތުވެދިޔަ އަހަރު ޕްރިންސިޕަލުންގެ ގޮތުގައި މަސައްކަތް ކޮށްފައިވާ ފަރާތްތަކެވެ.
2.      އެވޯޑް ފޯ ޑެޕިއުޓީ ޕްރިންސިޕަލް އޮފް ދަ އިޔަރ - މި މިންގަނޑުގައި ހިމެނޭނީ ފާއިތުވެދިޔަ އަހަރު ޑެޕިއުޓީ ޕްރިންސިޕަލުންގެ މަގާމުގައި މަސައްކަތް ކޮށްފައިވާ ފަރާތްތަކެވެ.
3.       އެލިޔާ އެވޯޑް ފޯ ސެކަންޑަރީ ލީޑިންޓީޗަރ އޮފް ދަ އިޔަރ - މި މިންގަނޑުގައި ހިމެނޭނީ ފާއިތުވެދިޔަ އަހަރު ސެކަންޑަރީ ލީޑިންޓީޗަރުންގެ މަގާމުގައި މަސައްކަތް ކޮށްފައިވާ ފަރާތްތަކެވެ.
4.      ވިލާ ކޮލެޖް އެވޯޑް ފޯ ސެކެންޑަރީ ޓީޗަރ އޮފް ދަ އިޔަރ - މި މިންގަނޑުގައި ހިމެނެނީ ސެކެންޑަރީ އާއި ހަޔާ ސެކަންޑަރީ އަށް ކިޔަވައިދޭ ތަމްރީނު ލިބިފައިތިބި ހުރިހައި މުދައްރިސުންނެވެ.
5.      އޭޑީކޭ ގުރޫޕް އެވޯޑް ފޯ ޕުރައިމަރީ ލީޑިން ޓީޗަރ އޮފް ދަ އިޔަރ - މި މިންގަނޑުގައި ހިމެނޭނީ ފާއިތުވެދިޔަ އަހަރު ޕުރައިމަރީ ލީޑިންޓީޗަރުންގެ މަގާމުގައި މަސައްކަތް ކޮށްފައިވާ ފަރާތްތަކެވެ.
6.      މީޑިޔާނެޓް ޑިޖިޓަލް އެވޯޑް ފޯ ޕުރައިމަރީ ސުކޫލު ޓީޗަރ އޮފް ދަ އިޔަރ - މި މިންގަނޑުގައި ހިމެނެނީ ޕްރައިމަރީ (ގްރޭޑު 1ން 7ށް) އަށް ކިޔަވައިދޭ ތަމްރީނު ލިބިފައިތިބި ހުރިހައި މުދައްރިސުންނެވެ.
7.      އޯކިޑް ހޯލްޑިންގްސް އެވޯޑް ފޯ ސެން (ޚާއްސައެހީއަށް ބޭނުންވާ ކުދިންނަށް ކިޔަވައިދޭ) ޓީޗަރ އޮފް ދަ އިޔަރ - މި މިންގަނޑުގައި ހިމެނެނީ ޚާއްސައެހީއަށް ބޭނުންވާ ކުދިންނަށް ކިޔަވައިދޭ ތަމްރީނު ލިބިފައިތިބި ހުރިހައި މުދައްރިސުންނެވެ.
8.      އެވޯޑް ފޯ ޕްރީސްކޫލް ހެޑް ޓީޗަރ އޮފް ދަ އިޔަރ - މި މިންގަނޑުގައި ހިމެނެނީ ޕުރީ ސުކޫލަށް ކިޔަވައިދޭ (ނާސަރީ، އެލްކޭޖީއަދި ޔޫކޭޖީ) ތަމްރީނު ލިބިފައިތިބި ހުރިހައި ހެޑް ޓީޗަރުން ނުވަތަ ލީޑިންގ ޓީޗަރުންނެވެ.
9.      ފޯސީޒަންސް އެވޯޑް ފޯ ޕްރީސްކޫލް ޓީޗަރ އޮފް ދަ އިޔަރ - މި މިންގަނޑުގައި ހިމެނެނީ ޕުރީ ސުކޫލަށް ކިޔަވައިދޭ (ނާސަރީ، އެލްކޭޖީއަދި ޔޫކޭޖީ) ތަމްރީނު ލިބިފައިތިބި ހުރިހައި މުދައްރިސުންނެވެ.
10.  އައިލަންޑް އޭވިއޭޝަން އެވޯޑް ފޯ ސަޕޯޓް ސްޓާފް އޮފް ދަ އިޔަރ - މި މިންގަނޑުގައި ހިމެނެނީ ސަޕޯޓު ސްޓާފު (ކައުންސެލަރުން، ހެލްތު އެސިސްޓެންޓުން، ލައިބުރޭރިއަނުން، ލެބު ޓެކްނީޝަނުން، އިދާރީ މުވައްޒަފުން ފަދަފަރާތްތައް) ކެޓަގަރީގައި މަސައްކަތްކުރާ ހުރިހައި ފަރާތްތަކެކެވެ.
11.  އެންސިސް އެވޯޑް ފޯ "ލައިފް ޓައިމް އެޗީވްމަންޓް" - މި މިންގަނޑުގައި ހިމެނެނީ ތައުލީމީ ދާއިރާގައި މަދުވެގެން 25 މަސައްކަތް ކޮށްފައިވާ ފަރާތްތަކެވެ. ( މިހާރު މަސައްކަތްކުރަމުންދާ ނުވަތަ މުސްކުޅި ކޮށްފައިވާ ފަރާތްތައްވެސް ހިމެނެއެވެ.)

Tuesday, April 30, 2013

Marzano's Nine Instructional Strategies for Effective Teaching and Learning

Researchers at Mid-continent Research for Education and Learning (McREL) have identified nine instructional strategies that are most likely to improve student achievement across all content areas and across all grade levels.

1. Identifying Similarities and Differences


The ability to break a concept into its similar and dissimilar characteristics
allows students to understand (and often solve) complex problems by
analyzing them in a more simple way. Teachers can either directly present
similarities and differences, accompanied by deep discussion and inquiry, or
simply ask students to identify similarities and differences on their own.
While teacher-directed activities focus on identifying specific items, studentdirected activities encourage variation and broaden understanding, research
shows. Research also notes that graphic forms are a good way to represent
similarities and differences.

Applications:

* Use Venn diagrams or charts to compare and classify items.
* Engage students in comparing, classifying, and creating
metaphors and analogies.

2. Summarizing and Note Taking


These skills promote greater comprehension by asking students to analyze a
subject to expose what's essential and then put it in their own words.
According to research, this requires substituting, deleting, and keeping some
things and having an awareness of the basic structure of the information
presented.

Applications:

* Provide a set of rules for creating a summary.
* When summarizing, ask students to question what is unclear, clarify those
* Use teacher-prepared notes.

* Stick to a consistent format for notes, although students can refine the
notes as necessary.

questions, and then predict what will happen next in the text.
Research shows that taking more notes is better than fewer notes, though
verbatim note taking is ineffective because it does not allow time to process
the information. Teachers should encourage and give time for review and
revision of notes; notes can be the best study guides for tests.

3. Reinforcing Effort and Providing Recognition


Effort and recognition speak to the attitudes and beliefs of students, and
teachers must show the connection between effort and achievement.
Research shows that although not all students realize the importance of
effort, they can learn to change their beliefs to emphasize effort.

Applications:

* Share stories about people who succeeded by not giving up.
* Have students keep a log of their weekly efforts and
achievements, reflect on it periodically, and even
mathematically analyze the data.
According to research, recognition is most effective if it is contingent on the
achievement of a certain standard. Also, symbolic recognition works better
than tangible rewards.

Applications:

* Find ways to personalize recognition. Give awards for
individual accomplishments.
* "Pause, Prompt, Praise." If a student is struggling, pause to
discuss the problem, then prompt with specific suggestions to
help her improve. If the student's performance improves as a
result, offer praise.

.... To be continued....

Source: http://www.ntuaft.com/TISE/Research-Based%20Instructional%20Strategies/marzanos%209%20strategies.pdf



Wednesday, March 13, 2013

Times tables key to good maths, inspectors say: Research


13 Nov 2011
A study published by Ofsted, the schools watchdog, says pupils without instant recall of multiplication tables struggle in maths.
It also condemned a modern teaching method which replaces traditional learning with "chunking" numbers as "cumbersome and confusing".
And it said that in schools which teach maths well, pupils tended to use traditional methods to add, subtract, multiply and divide.
Jean Humphrys, Ofsted's education director, said a range of methods could be used to teach times tables but that the teaching must be "rigorous".
"It is really important that children have the tools of arithmetic at their finger tips," she said. "Without that it is like sending a plumber out to do a job without knowing how to use a spanner."

Sunday, March 3, 2013

EVERY CHILD MATHEMATICALLY PROFICIENT: TIPS FOR TEACHERS

  1. High Expectations for All. Advocate for the establishment of clear standards for what all students should know at each grade level. These can be your guide for holding all students to high expectations. Search out strategies that will help mathematically challenged students meet higher expectations, including mastery of core concepts of Algebra and Geometry.
  2.  Algebra and Geometry by Grade Nine. Encourage your school to incorporate core concepts of Algebra and Geometry into the curriculum beginning in the early grades. Virtually every child should master these core concepts by grade nine.
  3. Continue Your Professional Development. Become proficient in the mathematics course content at all grade levels taught in your school. Students need teachers who are well prepared in content and math teaching techniques. Middle school teachers also need a solid understanding of primary and secondary level mathematics.
  4. Keep Parents Informed. Communicate to parents the specific standards that students are to meet at each grade level. Regularly update parents on their child’s progress.
  5. Involve the Business Community. Think of ways the local business community can be helpful to your school. Encourage local business people to visit classes and demonstrate how they use math in their work. Work through your school to encourage employers to participate in school-to-work programs and student career days, and to support teacher professional development.
  6. Push for Professional Development. Advocate for high quality training that is consistent with research findings, is ongoing, and relates to the curriculum you teach and on which students will be held accountable. Professional groups can also offer valuable support.
  7. Pair Math "Buddies." Start a peer tutoring program. Encourage students who "get it" to help struggling students with group work and homework. Peers can often give explanations that other students understand more easily. At the same time, search for different ways of presenting concepts that students find difficult.
  8. Be a "Math Ambassador." Through your interactions with students, parents, and outside of school, you can demystify math and highlight the importance of being mathematically literate. You can help others understand that math includes computation and much more.
  9. Use What Works in Your Classroom. Identify what the research shows is already known to work in teaching your subject and use these findings to guide your own instruction.

Tips are reproduced from the Learning First Alliance’s Every Child Mathematically Proficient: An Action plan. Available from: http://www.learningfirst.org/publications/math/teachers/

Wednesday, February 13, 2013

:އެސްކިޑު 2012ގެ ފާހަގަކޮށްލެވޭ ކާމިޔާބީތައް


 :އެސްކިޑު 2012ގެ ފާހަގަކޮށްލެވޭ ކާމިޔާބީތައް 


1.      ޗައިލްޑް ފުރެންޑުލީ ބަރާބަރު ސުކޫލު މިންގަނޑުތައް ބޭނުންކޮށްގެން ފުރަތަމަ ފަހަރަށް ސުކޫލުތައް ވަޒަންކުރުން
       - 11 ޓީމުގައި ޖުމްލަ 77، ފަންނީ މީހުން ބައިވެރިވި
       - 676 ޓީޗަރުންގެ ލެސަންޕުލޭނާއި ފިލާވަޅުތައް ބަލައި، ބިނާކުރުވަނިވި، އުފެއްދުންތެރި ފަންނީ ލަފަޔާއި އިރުޝާދުދިން
       - 1232 ގަޑިއިރު (އޮންސައިޓު، ސުކޫލުތަކުގައި) ހޭދަކުރި
       - 11 ސުކޫލުގެ ”ސުކޫލު އިމްޕުރޫވްމަންޓު ޕުލޭނު“ ތައްޔާރު ކުރި

2.      ޗައިލްޑް ފުރެންޑުލީ ބަރާބަރު ސުކޫލު މިންގަނޑުތައް ބޭނުންކޮށްގެން ސުކޫލުގެ ސެލްފް އިވެލުއޭޝަން ހިންގާނެ ގޮތުގެ ތަމްރީނު ދިނުން
          މާލެ އާއި އަތޮޅުތެރޭގެ 22 ސުކޫލުގައި ތަމްރީނު ހިންގި
          607 ފަރާތް ތަމްރީނު ކުރި (މުވައްޒިފުން، ބެލެނިވެރިން އަދި ދަރިވަރުން ހިމެނޭގޮތަށް)
          330 ގަޑީގެ ތަމްރީނު ހިންގި
          2 ސުކޫލެއްގައި ސެލްފް އިވެލުއޭޝަން ފެށި

3.      މަދަނީ އުފާ ޕޮރޮގުރާމު، ލައިފްސްކިލްސް ބޭސްޑް ޑުރަގު އެޑިޔުކޭޝަން ޕޮރޮގުރާމު ހިންގުން
       - 40 ސުކޫލުގެ ޕުރިންސިޕަލުންނާއި ޓީޗަރުން ތަމްރީނުކުރި
       - މުޅި ޖުމުލަ 133 މީހުން ތަމްރީނު ކުރި
       - 425 ގަޑީގެ ތަމްރީނު ހިންގި

މީގެ އިތުރުންވެސް ފާހަގަ ކޮށްލެވޭ ކާމިޔާބީ ތަކުގެ ތެރޭގައި......


     ނިއުޓްރިޝަން ވާރކްޝޮޕް
     އެސް.އޯ.ޕީ ތައް ތައްޔާރު ކޮށް ނިންމުން
      ސީ.އެފް.ބީ.އެސް ސްޓޭންޑަޑްސް ރިވައިސްކުރުން
     ޓީޗިންގ އެކްސެލަންސް އެވޯޑްސް
     ސްވިމިންގ ޕްރޮގްރާމް








Tuesday, February 5, 2013

What Metaphor Would You Use to Describe Your Teaching Practice?

Elona Harties, MED (Candidate, Ontario Certified Teacher describes her metaphor of teaching as below. What Metaphor Would You Use to Describe Your Teaching Practice?

"Teaching is gardening. When I’m gardening, I’m doing all I can to help the various plants in my garden flourish. If an fern or a rose bush isn’t flourishing, I don’t blame the fern or the rose bush. There’s no point. What I do is try to determine why the plants aren't flourishing. What is it that I can change so these plants will flourish- less sunshine, more water, etc. Not all plants like the same conditions. In order for my plants to flourish, I need to differentiate the care I give them; in order for my students to flourish, I need to differentiate the care I give them, too. Plants or students, it’s all the same to me. Blaming doesn't help them flourish. Differentiating the care I give them does." 

 Source: http://www.teachersatrisk.com/2010/10/13/what-metaphor-would-you-use-to-describe-your-teaching-practice/

Tuesday, January 29, 2013

School Culture


School culture is an important part of education. it is directly related to the satisfaction of all stakeholders of school. 

The diagram below represents the components of school culture. 


Patterson, Purkey, and Parker (1986) summarize the general knowledge base regarding school culture:
  • School culture does affect the behavior and achievement of elementary and secondary school students (though the effect of classroom and student variables remains greater).
  • School culture does not fall from the sky; it is created and thus can be manipulated by people within the school.
  • School cultures are unique; whatever their commonalities, no two schools will be exactly alike -- nor should they be.
  • To the extent that it provides a focus and clear purpose for the school, culture becomes the cohesion that bonds the school together as it goes about its mission.
  • Though we concentrate on its beneficial nature, culture can be counterproductive and an obstacle to educational success; culture can also be oppressive and discriminatory for various subgroups within the school.
  • Lasting fundamental change (e.g. changes in teaching practices or the decision making structure) requires understanding and, often, altering the school's culture; cultural change is a slow process.
    (p. 98)

    Reference: Southwest Educational Development Laboratory, 2013, School Context: Bridge or Barrier to Change [Online] Available from : http://www.sedl.org/change/school/culture.html